Задача А
Main idea of this task is to calculate how many points lie on each of X and Y coordinates. Let's save this numbers in cx[i] and cy[i] respectively. Then, number of triangles with right angle in point a, b is cx[a - 1] * cy[b - 1]. cx and cy can be calculated, for example, using hash tables.
Задача B

This problem can be solved using 4-dimensional Fenwick-tree in O(n^4 * (log n)^4) or in O(n^4) using queues, but in that case hidden constant is big enough.

Задача C
Solution must use dynamic programming. If we calculate d[i, j] - number of ways between traps i and j, which not pass through any other trap, then for each subset of traps X we can calculate number of ways passing through all of them following way: w[x] = w[x - 2^k] * d[k, j], where k is the trap, previous to j in the subset x. d[i, j] can be calculated using following formula: d[i, j] = c[i, j] - sum(d[i, k] * c[k, j] for all k except i and j) where c[i, j] - total number of ways between traps i and j, which is calculated using binomial coefficients. Now, we know total number of ways, which pass trough each number of traps and we can subtract it from total number of ways between (0,0) and (n, m) to receive the answer.

Задача D

After putting another stone there are three possibilities:

-Side 1 is heavier

-Side 2 is heavier

-Not clear which side is heavier

We will describe how to check whether Side 1 is heavier. Similarly, we will check the other case and if none of them are true, the third option is the answer.

We maintain the array A of size N. For each moment A[i] will be:

* -1, if the stone with rank i is on side 2;

* 0, if the stone with rank i is not on scale yet;

* 1, if the stone with rank i is on side 1.

It's not hard to see that side 1 is heavier than side 2 if and only if for each i the sum of A[i]+A[i+1]...+A[N] is nonnegative. The direct solution checking this condition works in O(N^3)or O(N^2) time.

We will describe the algorithm that needs O(log(N)) time for adding each new stone - giving O(N log(N)) complexity in total.

Instead of the array A, we consider the array S, where S[i] = A[i]+...+A[N].

Now, after adding the next stone we need to do two things: * Update S array. If the stone with rank i is added, S[1], S[2], ... S[i] will be increased by X, where X is either -1 or 1. * Check the condition. In fact, it is enough to find the minimal element in S. If it's nonnegative, than the main condition is satisfied.

We can do both operations in log(N) time using the segment tree data structure which allows to perform more general operations:
*Adding some value to each element for any array segment
*Finding the minimum value in any segment

Задача E

First of all we must find whether the number of the segment in which N-th number lies.

x = max(x: x * (x + 1) <= n * 2)

The last number of the segment is x * x and from it we can calculate the N-th number.
[image: image1.jpg]MocAeA0BaTENLHOCTE BHITNARMT TaK:

afo] = o
if (aldd - 1] is square) a[id] = a[id - 1] + 1
else alid] = alid - 1] + 2

Ouesano, 1o oTeer 310 (2 * N—5), rae § — konnecten keagparos 4o a[M)
S=X+1,mpe X= makchmaneroe X uro X2 < =a[]

Hano waiim X, Aenaem 310 GHnonckom
TlonycTim y Wt Kakoe 7o X, x0T nposepre X2 <= a[N]
Ecn X noaxonu To X1 ToKe NOAXOAMT, SHAWHT ¥ HaC oTeeT AnA X1 370 Z°N-0C 1)+ (denaem + nockonsky S

o2 ManeHs K, €CIH He YSHTIEATE ATHHHYIO ZPHBMETHKY.

Задача F

Let D(i,h1,h2) be the minimal possible cost to build the first i skyscrapers completely and the next two skyscrapers with h1 and h2 floors, respectively.

We will try to find the recursive formula for computing D. Let's focus how to build the last building (to h2 floors).

If h2 is 0, then we don't need to build the last one, i.e. we have the same problem but with the different parameters:

D(i,h1,0) = D(i-1,h[i-1],h1).

If h2>0, there are three cases:

a) we accept at least once the first offer to build the last building. In this case, D(i,h1,h2)=D(i-1,h1,h2-1)+3.

b) we use the second offer. In this case, D(i,h1,h2)=D(i-1,h1-1,h2-1)+5.

c) we don't use any of the first two offers. In this case, we need to build all h2 floors with the third offer, i.e. we get D(i,h1,h2)=D(i-1,h[i-1]-h2,h1-h2)+h2*7.

It's clear that to minimize the cost, we should choose the best of these three possibilities. To answer the main question, we should calculate D(n,0,0).

In order to calculate all values of D in process quickly, we need to use either dynamic programming or memoization.

Задача G

This problem can be solved using such data structures as cartesian tree or skiplist.

Задача H

This problem can be solved using binary search. Let's do the binary search on the answer. Current path is X and it can be represented as a number in base 26. Count number of path less than X. If it's greater than K move right limit, in other case - move left limit. At the end the left limit will be the answer. Number of paths less than X can be calculated using simple dynamic programming: d[i, j] - number of ways to reach cell (i, j) with the path equal to the prefix of X.

